
American Express Data Analyst
Interview Questions

(0-3 Years)
17-19 lpa

 INNER JOIN:
Returns only matching records from both tables.
SELECT e.name, d.department_name
FROM employees e
INNER JOIN departments d ON e.department_id = d.department_id;

• Output: Only employees who belong to a department.
LEFT OUTER JOIN:

Returns all records from the left table, and matching records from the right table. If no
match, NULL is returned.
SELECT e.name, d.department_name
FROM employees e
LEFT JOIN departments d ON e.department_id = d.department_id;

• Output: All employees, with department info where available.
RIGHT OUTER JOIN:

Returns all records from the right table, and matching records from the left.
FULL OUTER JOIN:

1. Write a query to find duplicate rows in a table.
To detect duplicates, identify columns that should be unique and group by them.
Example:
SELECT column1, column2, COUNT(*) AS count
FROM your_table
GROUP BY column1, column2
HAVING COUNT(*) > 1;
Explanation:

•
•

GROUP BY combines rows with the same values in the specified columns.
HAVING COUNT(*) > 1 filters those combinations that occur more than once, indicating
duplicates.

Tip: Add ROW_NUMBER() or RANK() with CTE to highlight or delete duplicates if needed.

SQL Questions

2. Explain the difference between INNER JOIN and OUTER
JOIN with examples.

Returns all records from both tables, matching where possible.
Key Difference:

•
•

INNER JOIN = intersection (matched data only)
OUTER JOIN = union + NULLs (matched + unmatched data)

Assume the table employees has:
emp_id, name, salary, manager_id
SELECT e.name AS employee_name, e.salary, m.name AS manager_name, m.salary AS
manager_salary
FROM employees e
JOIN employees m ON e.manager_id = m.emp_id
WHERE e.salary > m.salary;
Explanation:

Use GROUP BY to group data and HAVING to filter aggregated results (unlike WHERE,
which filters raw rows).
SELECT department_id, COUNT(*) AS emp_count
FROM employees
GROUP BY department_id
HAVING COUNT(*) > 5;
Explanation:

• Groups employees by department.
• Filters groups where the count of employees is more than 5.

Option 1: Using DISTINCT, ORDER BY, and LIMIT (MySQL/PostgreSQL)
SELECT DISTINCT salary
FROM employees
ORDER BY salary DESC
LIMIT 1 OFFSET 1;
Option 2: Using subquery (Generic SQL)
SELECT MAX(salary)
FROM employees
WHERE salary < (SELECT MAX(salary) FROM employees);
Explanation:

• The subquery fetches the highest salary.
• The outer query finds the maximum salary less than the highest — giving the second-

highest.

5. Write a query to find employees earning more than their
managers.

3. Write a query to fetch the second-highest salary from an
employee table.

4. How do you use GROUP BY and HAVING together? Provide
an example.

•
•

Self-join: matches employees (e) with their managers (m).
Filters those where employee's salary > manager's salary.

Assume table sales_data has:
product_id, product_name, total_sales
SELECT product_id, product_name, total_sales
FROM sales_data
ORDER BY total_sales DESC
LIMIT 3;
Alternate using RANK() (if ties matter):

SELECT product_id, product_name, total_sales
FROM (
SELECT *, RANK() OVER (ORDER BY total_sales DESC) AS rank_num
FROM sales_data

) ranked_sales
WHERE rank_num <= 3;

 Definition:
A window function performs calculations across a set of table rows related to the current
row — without collapsing rows like GROUP BY.
Syntax:
FUNCTION_NAME() OVER (PARTITION BY column ORDER BY column)

Example: ROW_NUMBER()
Assigns a unique sequential number to each row within a partition.
SELECT name, department, salary,

ROW_NUMBER() OVER (PARTITION BY department ORDER BY salary DESC) AS row_num
FROM employees;

• Each employee within the same department gets a row number based on salary rank
(highest first).

Example: RANK()
Assigns the same rank to rows with equal values, but skips the next rank(s).
SELECT name, department, salary,

RANK() OVER (PARTITION BY department ORDER BY salary DESC) AS rank_num
FROM employees;

• If 2 employees have the same salary, both get rank 1, and the next gets rank 3.

6. What is a window function in SQL? Provide examples of
ROW_NUMBER and RANK.

7. Write a query to fetch the top 3 performing products based
on sales.

 CASE lets you write conditional logic in SQL (similar to IF/ELSE).
SELECT name, salary,

CASE
WHEN salary >= 100000 THEN 'High'
WHEN salary >= 50000 THEN 'Medium'
ELSE 'Low'

END AS salary_category
FROM employees;
Explanation:

• Assigns a category based on salary value.
• Works inside SELECT, WHERE, ORDER BY, etc.

Feature
Duplicates

UNION
Removes duplicates

UNION ALL
Keeps all rows, including duplicates

Performance Slower (because of sorting) Faster (no de-duplication)
Use case When you want distinct rows When duplicates are meaningful

Example:
SELECT city FROM customers
UNION
SELECT city FROM vendors;
→ Returns a unique list of cities.
SELECT city FROM customers
UNION ALL
SELECT city FROM vendors;
→ Returns all cities, including duplicates.

9. How do you use a CASE statement in SQL? Provide an
example.

Assume table sales has:
order_date, product_id, sales_amount
SELECT order_date, product_id, sales_amount,

SUM(sales_amount) OVER (PARTITION BY product_id ORDER BY order_date) AS
cumulative_sales
FROM sales;
Explanation:

•
•

SUM(...) OVER (...) calculates a running total per product based on order date.
PARTITION BY groups by product, and ORDER BY ensures the accumulation follows
chronological order.

8. Explain the difference between UNION and UNION ALL.

10. Write a query to calculate the cumulative sum of sales.

Assume transactions table has:
customer_id, transaction_amount
SELECT customer_id, COUNT(*) AS high_value_txns
FROM transactions
WHERE transaction_amount > 5000
GROUP BY customer_id
HAVING COUNT(*) > 1;
Explanation:

•
•

Filters high-value transactions (> $5000).
Groups them by customer.

• Returns customers who’ve done this more than once.

 Definition:
A CTE (Common Table Expression) is a temporary, named result set that you can
reference within a SQL query.
It improves readability and simplifies complex subqueries or recursive logic.

Syntax:

WITH cte_name AS (
SELECT ...

)
SELECT * FROM cte_name;

Example – Filter top-paid employees using CTE:
WITH HighEarners AS (
SELECT emp_id, name, salary
FROM employees
WHERE salary > 100000

)
SELECT * FROM HighEarners;
Benefits:

•
•
•

Reusable and readable
Allows recursion (e.g., hierarchical data)
Avoids repeating subqueries

12. Write a query to identify customers who have made
transactions above $5,000 multiple times.

13. Explain the difference between DELETE and TRUNCATE
commands.

11. What is a CTE (Common Table Expression), and how is it
used?

15. Write a query to find all customers who have not made

14. How do you optimize SQL queries for better performance?
Here are key SQL optimization techniques:

Feature
Removes rows
WHERE
supported?
Logging

Rollback

Identity reset
Use case

DELETE
Yes (can use WHERE condition)

Yes

Logs each deleted row (slower)
Can be rolled back (if within

transaction)
Retains identity

Partial deletion or audit trail needed

1. Use SELECT only required columns

-- Bad
SELECT * FROM orders;
-- Good
SELECT order_id, customer_id FROM orders;

2. Create proper indexes
• Index frequently used columns in JOIN, WHERE, ORDER BY.
3. Avoid functions on indexed columns

-- Slower (cannot use index)
WHERE YEAR(order_date) = 2024
-- Better
WHERE order_date BETWEEN '2024-01-01' AND '2024-12-31'

4. Use EXISTS instead of IN (for subqueries)

-- Prefer EXISTS (better for large datasets)
SELECT name FROM customers c
WHERE EXISTS (
SELECT 1 FROM orders o WHERE o.customer_id = c.customer_id

);
5. Avoid unnecessary joins or nested subqueries
6. Use appropriate data types and avoid implicit conversions
7. Analyze execution plans (EXPLAIN or EXPLAIN ANALYZE)

TRUNCATE
Yes (removes all rows)

No

Minimal logging (faster)
Can be rolled back (in some

RDBMS)
Resets identity (in most DBs)

Full data wipe without audit needed

any purchases in the last 6 months.
Assume:

17. Write a query to transpose rows into columns.
Assume a table sales with:
region, month, sales_amount
We want to pivot month values into columns.

16. How do you handle NULL values in SQL? Provide
examples.
 NULL represents missing or unknown data.

Using CASE:

1. Using IS NULL / IS NOT NULL:
SELECT * FROM employees WHERE manager_id IS NULL;

2. Replace NULL using COALESCE() or IFNULL() (MySQL):
SELECT name, COALESCE(phone_number, 'Not Provided') AS contact
FROM customers;

3. Handling NULLs in aggregation (e.g., AVG, SUM):
• These functions ignore NULLs by default.

SELECT AVG(salary) FROM employees;

4. Conditional checks:
SELECT name,

CASE
WHEN salary IS NULL THEN 'Unknown'
ELSE 'Known'

END AS salary_status
FROM employees;

•
•

customers(customer_id, name)
transactions(customer_id, transaction_date)

SELECT c.customer_id, c.name
FROM customers c
LEFT JOIN transactions t
ON c.customer_id = t.customer_id

AND t.transaction_date >= CURRENT_DATE - INTERVAL '6 months'
WHERE t.customer_id IS NULL;
Explanation:

• LEFT JOIN includes all customers.
• WHERE t.customer_id IS NULL ensures the customer had no purchase in the last 6

months.

Assume a transactions table:

SELECT region,
SUM(CASE WHEN month = 'Jan' THEN sales_amount ELSE 0 END) AS Jan,
SUM(CASE WHEN month = 'Feb' THEN sales_amount ELSE 0 END) AS Feb,
SUM(CASE WHEN month = 'Mar' THEN sales_amount ELSE 0 END) AS Mar

FROM sales
GROUP BY region;

Using PIVOT (SQL Server or Oracle syntax):
SELECT region, [Jan], [Feb], [Mar]
FROM (
SELECT region, month, sales_amount
FROM sales

) AS src
PIVOT (
SUM(sales_amount)
FOR month IN ([Jan], [Feb], [Mar])

) AS p;
18. Explain indexing and how it improves query performance.

What is an index?
An index is a data structure that improves the speed of data retrieval operations on a
database table at the cost of additional space and write-time performance.

How indexing helps:
Feature
Search performance Fast (uses binary/tree search)

With Index Without Index
Slow (scans every row — full scan)

Used in
Types

WHERE, JOIN, ORDER BY, GROUP BY Inefficient for large datasets
B-tree (default), Bitmap, Hash, etc. -

Example:
-- Creating index
CREATE INDEX idx_customer_id ON transactions(customer_id);

• This helps queries like:
SELECT * FROM transactions WHERE customer_id = 101;

Important notes:
• Too many indexes can slow down INSERT/UPDATE.
• Avoid indexing columns with low cardinality (e.g., gender).
• Use composite indexes when querying multiple columns together.

19. Write a query to fetch the maximum transaction amount
for each customer.

Column Description
customer_id ID of the customer
transaction_id Unique transaction ID
amount Transaction amount

Query:
SELECT customer_id, MAX(amount) AS max_transaction
FROM transactions
GROUP BY customer_id;

Explanation:
•
•

GROUP BY groups all transactions by customer.
MAX(amount) returns the highest transaction for each group (customer).

 Definition:
A self-join is a regular join where a table is joined with itself.
It is useful when rows in a table are related to other rows in the same table.

Example Use Case – Employees and Managers:
Assume:
emp_id name manager_id
1
2
3
4

Alice
Bob
NULL
1
Carol 1
David 2

Here, manager_id refers to emp_id of another employee.
Query: Get employee names along with their manager names

SELECT e.name AS employee_name, m.name AS manager_name
FROM employees e
LEFT JOIN employees m
ON e.manager_id = m.emp_id;

Explanation:
•
•
•

e is an alias for employees (as employee).
m is another alias for the same table (as manager).
The join links an employee to their manager using manager_id = emp_id.

20. What is a self-join, and how is it used?

21. How would you design a database to store credit card

Data Analysis/Scenario-Based Questions

transaction data?
To store credit card transaction data, we need to normalize the structure while keeping it
scalable, secure, and query-efficient.

23. How would you analyze customer churn using SQL?

22. Write a query to identify the most profitable regions based
on transaction data.
Assume a transactions table:
(transaction_id, customer_id, amount, region, transaction_date)

 Step-by-step SQL approach:

Step 1: Define churn
Let’s say a churned customer is one who hasn’t transacted in the last 6 months.

Step 2: Sample schema
•
•

customers(customer_id, name, signup_date)
transactions(customer_id, transaction_date, amount)

Query to find top 3 profitable regions:
SELECT region, SUM(amount) AS total_revenue
FROM transactions
GROUP BY region
ORDER BY total_revenue DESC
LIMIT 3;

Explanation:
•
•
•

Aggregates transaction amounts per region.
Orders regions by total revenue.
Retrieves top 3 using LIMIT.

Optional: You could also calculate profit by subtracting costs (if a cost column is present).

Suggested Schema Design:
1. Customers Table customer_id (PK), name, email, phone, address 2. Cards Table
card_id (PK), customer_id (FK), card_number (masked), card_type, status, issued_date
3. Merchants Table merchant_id (PK), name, category, location 4. Transactions
Table transaction_id (PK), card_id (FK), merchant_id (FK), transaction_date, amount,
currency, status, location

Best Practices:
•
•
•
•

Mask sensitive fields (like card numbers).
Store card_number as encrypted or tokenized.
Use partitioning on date fields for faster querying.
Add indexes on card_id, merchant_id, transaction_date.

 ARPU = Total Revenue / Total Number of Users
Assume a transactions table:

(transaction_id, customer_id, amount, transaction_date)
SQL Query:

SELECT
SUM(amount) * 1.0 / COUNT(DISTINCT customer_id) AS ARPU

 Step 3: Query to identify churned customers
SELECT c.customer_id, c.name
FROM customers c
LEFT JOIN transactions t
ON c.customer_id = t.customer_id

AND t.transaction_date >= CURRENT_DATE - INTERVAL '6 months'
WHERE t.transaction_id IS NULL;

Step 4: Analyze churn metrics
You could extend this analysis by calculating:

•
•
•

Churn rate = (Churned Customers / Total Customers) * 100
Monthly churn trend
Compare churned vs. active customers in terms of average spend

OLTP (Online TransactionProcessing)
Handles real-time transactional
queries INSERT, UPDATE, DELETE

OLAP (Online AnalyticalProcessing) Used for analytical/reporting queries
SELECT (aggregate, group, slice,
dice)
De-normalized (star/snowflake
schema)
Fast for complex analytical queries
Business intelligence, dashboards,sales trends
Analysts, Data Scientists
Less frequent

Feature

Purpose

Operations

Data Structure
Speed
Examples
Users
Backup/Recovery Essential and frequent

Highly normalized (3NF)
Fast for read/write of single rows
Banking systems, e-commerceorder processing
Clerks, DBAs

In short:
•
•

OLTP = operational, fast, real-time transactions.
OLAP = analytical, slow-changing, historical data.

25. How would you determine the Average Revenue Per User
(ARPU) from transaction data?

24. Explain the difference between OLAP and OLTP databases.

Assume a table named transactions with:
(customer_id, transaction_date, amount)

Step 1: Extract year-wise revenue
SELECT
EXTRACT(YEAR FROM transaction_date) AS year,
SUM(amount) AS total_revenue

FROM transactions
GROUP BY EXTRACT(YEAR FROM transaction_date);

Step 2: Calculate YoY Growth using a CTE and Self-Join
WITH yearly_revenue AS (

FROM transactions;
Explanation:
•
•
•

SUM(amount) gets total revenue.
COUNT(DISTINCT customer_id) counts unique users.
Multiply by 1.0 to ensure float division.

You can also compute monthly ARPU by grouping by month.
SELECT
DATE_TRUNC('month', transaction_date) AS month,
SUM(amount) * 1.0 / COUNT(DISTINCT customer_id) AS monthly_arpu

FROM transactions
GROUP BY month
ORDER BY month;
26. Describe a scenario where you would use a LEFT JOIN
instead of an INNER JOIN.
 Use LEFT JOIN when:
You want all records from the left table, even if there's no matching record in the right
table.

Real-life Scenario:
Question: List all customers and their transactions — even if they haven't made any.

Query:
SELECT c.customer_id, c.name, t.transaction_id, t.amount
FROM customers c
LEFT JOIN transactions t
ON c.customer_id = t.customer_id;

Why LEFT JOIN?
• Shows all customers, including those with no transactions (returns NULLs for

those).
Using INNER JOIN would exclude customers with zero activity. •

27. Write a query to calculate YoY (Year-over-Year) growth
for a set of transactions.

 SELECT
EXTRACT(YEAR FROM transaction_date) AS year,
SUM(amount) AS total_revenue

FROM transactions
GROUP BY EXTRACT(YEAR FROM transaction_date)

)
SELECT
curr.year AS current_year,
curr.total_revenue,
prev.total_revenue AS previous_year_revenue,
ROUND(((curr.total_revenue - prev.total_revenue) / prev.total_revenue) * 100, 2) AS

yoy_growth_percent
FROM yearly_revenue curr
LEFT JOIN yearly_revenue prev
ON curr.year = prev.year + 1;

Explanation:
•
•

Joins each year to its previous year.
Computes YoY growth as a percentage.

Fraud detection typically involves pattern recognition, anomaly detection, and rule-based
filtering.

Possible SQL-Based Checks:
Type Rule

Unusual Amounts Flag transactions > 3x average amount of that user
Rapid Repeats Detect multiple transactions from same user within seconds
Location Mismatch Transactions from different countries within a short time
Card Sharing Same card used by different customers or IPs
Example Query – Unusual high amount per user:

WITH avg_txn AS (
SELECT customer_id, AVG(amount) AS avg_amount
FROM transactions
GROUP BY customer_id

)
SELECT t.*
FROM transactions t
JOIN avg_txn a
ON t.customer_id = a.customer_id

WHERE t.amount > 3 * a.avg_amount;
29. Write a query to find customers who have used more than
2 credit cards for transactions in a given month.

28. How would you implement fraud detection using
transactional data?

Assume a transactions table:
(customer_id, card_id, transaction_date)

Query:
SELECT customer_id,

TO_CHAR(transaction_date, 'YYYY-MM') AS txn_month,
COUNT(DISTINCT card_id) AS cards_used

FROM transactions
GROUP BY customer_id, TO_CHAR(transaction_date, 'YYYY-MM')
HAVING COUNT(DISTINCT card_id) > 2;

Explanation:
•
•
•

Groups by customer_id and month.
Counts distinct card_id used.
Filters where more than 2 cards were used in a month.

 Step-by-Step Structured Approach:

Step 1: Understand the Objective
• Clarify with stakeholders what "spending pattern" means.

o Is it frequency, amount, category, channel, or timing?
• Define “premium customer”:

o Based on credit score, card tier (e.g., Platinum, Centurion), monthly spend
threshold, etc.

Step 2: Data Collection
• Gather relevant datasets:

o Customer table (ID, tier, demographics)
o Transactions table (amount, date, category, location)
o Cards table (card_type, limits, activation)

Step 3: Data Cleaning & Preparation
Handle missing values and outliers. •

• Filter only premium customers using defined criteria.
• Enrich data (e.g., categorize merchant types or locations).

Step 4: Exploratory Data Analysis (EDA)
Use SQL/Python/Power BI to derive insights like:
Focus Area Example Analysis

Spend Amount Average monthly/yearly spend
Time Trends
Categories
Geography

Seasonality or weekly spending behavior
Where they spend most (Travel, Dining, Shopping)
City or region-wise behavior

30. How would you approach a business problem where you
need to analyze the spending patterns of premium customers?

Focus Area Example Analysis
Is their spend increasing/decreasing YoY? Trends

Step 5: Segmentation
• Use clustering or thresholds to group premium customers into:

o
o
o

High spenders
Frequent spenders
Category loyalists (e.g., only travel)

• Identify anomalies or subgroups with unique patterns.

Step 6: Business Recommendations
•
•
•

Personalize rewards or offers based on their dominant categories.
Enhance retention strategies for segments showing decline.
Promote premium card upgrades based on usage patterns.

Bonus: Sample SQL Query
Get top 3 spending categories of premium customers monthly:
SELECT customer_id,

DATE_TRUNC('month', transaction_date) AS txn_month,
category,
SUM(amount) AS total_spend

FROM transactions
WHERE customer_id IN (

SELECT customer_id FROM customers WHERE tier = 'Premium'
)
GROUP BY customer_id, txn_month, category
ORDER BY customer_id, txn_month, total_spend DESC;

