Top 50 Large Language Model (LLM) Interview
Questions

Hao Hoang - Follow me on LinkedIn for Al insights!

May 2025

Explore the key concepts, techniques, and challenges of Large Language Models (LLMs)
with this comprehensive guide, crafted for Al enthusiasts and professionals preparing for
interviews.

Introduction

Large Language Models (LLMs) are revolutionizing artificial intelligence, enabling ap-
plications from chatbots to automated content creation. This document compiles 50
essential interview questions, carefully curated to deepen your understanding of LLMs.
Each question is paired with a detailed answer, blending technical insights with practical
examples. Share this knowledge with your network to spark meaningful discussions in
the Al community!

1 Question 1: What does tokenization entail, and why is it
critical for LLMs?

Tokenization involves breaking down text into smaller units, or tokens, such as words,
subwords, or characters. For example, "artificial" might be split into "art," "ific," and
"jal." This process is vital because LLMs process numerical representations of tokens,
not raw text. Tokenization enables models to handle diverse languages, manage rare or
unknown words, and optimize vocabulary size, enhancing computational efficiency and
model performance.

2 Question 2: How does the attention mechanism function in
transformer models?

The attention mechanism allows LLMs to weigh the importance of different tokens in a se-
quence when generating or interpreting text. It computes similarity scores between query,
key, and value vectors, using operations like dot products, to focus on relevant tokens.
For instance, in "The cat chased the mouse," attention helps the model link "mouse" to
"chased." This mechanism improves context understanding, making transformers highly
effective for NLP tasks.

https://linkedin.com/in/hoang-van-hao

3 Question 3: What is the context window in LLMs, and why
does it matter?

The context window refers to the number of tokens an LLM can process at once, defining
its "memory" for understanding or generating text. A larger window, like 32,000 tokens,
allows the model to consider more context, improving coherence in tasks like summariza-
tion. However, it increases computational costs. Balancing window size with efficiency is
crucial for practical LLM deployment.

4 Question 4: What distinguishes LoRA from QLoRA in fine-
tuning LLMs?

LoRA (Low-Rank Adaptation) is a fine-tuning method that adds low-rank matrices to
a models layers, enabling efficient adaptation with minimal memory overhead. QLoRA
extends this by applying quantization (e.g., 4-bit precision) to further reduce memory
usage while maintaining accuracy. For example, QLoRA can fine-tune a 70B-parameter
model on a single GPU, making it ideal for resource-constrained environments.

5 Question 5: How does beam search improve text generation
compared to greedy decoding?

Beam search explores multiple word sequences during text generation, keeping the top
k candidates (beams) at each step, unlike greedy decoding, which selects only the most
probable word. This approach, with £ = 5, for instance, ensures more coherent outputs
by balancing probability and diversity, especially in tasks like machine translation or
dialogue generation.

6 Question 6: What role does temperature play in controlling
LLM output?

Temperature is a hyperparameter that adjusts the randomness of token selection in text
generation. A low temperature (e.g., 0.3) favors high-probability tokens, producing pre-
dictable outputs. A high temperature (e.g., 1.5) increases diversity by flattening the
probability distribution. Setting temperature to 0.8 often balances creativity and coher-
ence for tasks like storytelling.

7 Question 7: What is masked language modeling, and how
does it aid pretraining?
Masked language modeling (MLM) involves hiding random tokens in a sequence and

training the model to predict them based on context. Used in models like BERT, MLM
fosters bidirectional understanding of language, enabling the model to grasp semantic

relationships. This pretraining approach equips LLMs for tasks like sentiment analysis
or question answering.

8 Question 8: What are sequence-to-sequence models, and where
are they applied?

Sequence-to-sequence (Seq2Seq) models transform an input sequence into an output se-
quence, often of different lengths. They consist of an encoder to process the input and a
decoder to generate the output. Applications include machine translation (e.g., English
to Spanish), text summarization, and chatbots, where variable-length inputs and outputs
are common.

9 Question 9: How do autoregressive and masked models differ
in LLM training?

Autoregressive models, like GPT, predict tokens sequentially based on prior tokens, ex-
celling in generative tasks such as text completion. Masked models, like BERT, predict
masked tokens using bidirectional context, making them ideal for understanding tasks
like classification. Their training objectives shape their strengths in generation versus
comprehension.

10 Question 10: What are embeddings, and how are they ini-
tialized in LLMs?

Embeddings are dense vectors that represent tokens in a continuous space, capturing
semantic and syntactic properties. They are often initialized randomly or with pretrained
models like GloVe, then fine-tuned during training. For example, the embedding for "dog"
might evolve to reflect its context in pet-related tasks, enhancing model accuracy.

11 Question 11: What is next sentence prediction, and how
does it enhance LLMs?

Next sentence prediction (NSP) trains models to determine if two sentences are consec-
utive or unrelated. During pretraining, models like BERT learn to classify 50% posi-
tive (sequential) and 50% negative (random) sentence pairs. NSP improves coherence
in tasks like dialogue systems or document summarization by understanding sentence
relationships.

12 Question 12: How do top-k and top-p sampling differ in text
generation?

Top-k sampling selects the k most probable tokens (e.g., k = 20) for random sampling,

ensuring controlled diversity. Top-p (nucleus) sampling chooses tokens whose cumulative

probability exceeds a threshold p (e.g., 0.95), adapting to context. Top-p offers more
flexibility, producing varied yet coherent outputs in creative writing.

13 Question 13: Why is prompt engineering crucial for LLM
performance?

Prompt engineering involves designing inputs to elicit desired LLM responses. A clear
prompt, like "Summarize this article in 100 words," improves output relevance compared
to vague instructions. Its especially effective in zero-shot or few-shot settings, enabling
LLMs to tackle tasks like translation or classification without extensive fine-tuning.

14 Question 14: How can LLMs avoid catastrophic forgetting
during fine-tuning?
Catastrophic forgetting occurs when fine-tuning erases prior knowledge. Mitigation strate-
gies include:
e Rehearsal: Mixing old and new data during training.
e Elastic Weight Consolidation: Prioritizing critical weights to preserve knowledge.
e Modular Architectures: Adding task-specific modules to avoid overwriting.

These methods ensure LLMs retain versatility across tasks.

15 Question 15: What is model distillation, and how does it
benefit LLMs?

Model distillation trains a smaller "student" model to mimic a larger "teacher" models
outputs, using soft probabilities rather than hard labels. This reduces memory and com-
putational requirements, enabling deployment on devices like smartphones while retaining
near-teacher performance, ideal for real-time applications.

16 Question 16: How do LLMs manage out-of-vocabulary (OOV)
words?

LLMs use subword tokenization, like Byte-Pair Encoding (BPE), to break OOV words
into known subword units. For instance, "cryptocurrency" might split into "crypto" and
"currency." This approach allows LLMs to process rare or new words, ensuring robust
language understanding and generation.

17 Question 17: How do transformers improve on traditional
Seq25eq models?

Transformers overcome Seq2Seq limitations by:

e Parallel Processing: Self-attention enables simultaneous token processing, unlike
sequential RNNs.

e Long-Range Dependencies: Attention captures distant token relationships.
e Positional Encodings: These preserve sequence order.

These features enhance scalability and performance in tasks like translation.

18 Question 18: What is overfitting, and how can it be miti-
gated in LLMs?

Overfitting occurs when a model memorizes training data, failing to generalize. Mitigation
includes:

e Regularization: L1/L2 penalties simplify models.
e Dropout: Randomly disables neurons during training.
e Early Stopping: Halts training when validation performance plateaus.

These techniques ensure robust generalization to unseen data.

19 Question 19: What are generative versus discriminative mod-
els in NLP?

Generative models, like GPT, model joint probabilities to create new data, such as text or
images. Discriminative models, like BERT for classification, model conditional probabil-
ities to distinguish classes, e.g., sentiment analysis. Generative models excel in creation,
while discriminative models focus on accurate classification.

20 Question 20: How does GPT-4 differ from GPT-3 in features
and applications?

GPT-4 surpasses GPT-3 with:
e Multimodal Input: Processes text and images.
e Larger Context: Handles up to 25,000 tokens versus GPT-3s 4,096.
e Enhanced Accuracy: Reduces factual errors through better fine-tuning.

These improvements expand its use in visual question answering and complex dialogues.

21 Question 21: What are positional encodings, and why are
they used?

Positional encodings add sequence order information to transformer inputs, as self-attention
lacks inherent order awareness. Using sinusoidal functions or learned vectors, they ensure
tokens like "king" and "crown" are interpreted correctly based on position, critical for
tasks like translation.

22 Question 22: What is multi-head attention, and how does
it enhance LLMs?

Multi-head attention splits queries, keys, and values into multiple subspaces, allowing
the model to focus on different aspects of the input simultaneously. For example, in
a sentence, one head might focus on syntax, another on semantics. This improves the
models ability to capture complex patterns.

23 Question 23: How is the softmax function applied in atten-
tion mechanisms?

The softmax function normalizes attention scores into a probability distribution:

T

e
Zj eri

In attention, it converts raw similarity scores (from query-key dot products) into weights,
emphasizing relevant tokens. This ensures the model focuses on contextually important
parts of the input.

softmax(x;) =

24 Question 24: How does the dot product contribute to self-
attention?

In self-attention, the dot product between query (@) and key (K) vectors computes
similarity scores:

QK

Vg

High scores indicate relevant tokens. While efficient, its quadratic complexity (O(n?)) for
long sequences has spurred research into sparse attention alternatives.

Score =

25 Question 25: Why is cross-entropy loss used in language
modeling?

Cross-entropy loss measures the divergence between predicted and true token probabili-

ties:
L=-Y ylog(i)

6

It penalizes incorrect predictions, encouraging accurate token selection. In language mod-
eling, it ensures the model assigns high probabilities to correct next tokens, optimizing
performance.

26 Question 26: How are gradients computed for embeddings
in LLMs?

Gradients for embeddings are computed using the chain rule during backpropagation:

oL 0L Ologits
OE Ologits OFE

These gradients adjust embedding vectors to minimize loss, refining their semantic rep-
resentations for better task performance.

27 Question 27: What is the Jacobian matrixs role in trans-
former backpropagation?

The Jacobian matrix captures partial derivatives of outputs with respect to inputs. In

transformers, it helps compute gradients for multidimensional outputs, ensuring accu-

rate updates to weights and embeddings during backpropagation, critical for optimizing
complex models.

28 Question 28: How do eigenvalues and eigenvectors relate to
dimensionality reduction?

Eigenvectors define principal directions in data, and eigenvalues indicate their variance.

In techniques like PCA, selecting eigenvectors with high eigenvalues reduces dimension-

ality while retaining most variance, enabling efficient data representation for LLMs input
processing.

29 Question 29: What is KL divergence, and how is it used in
LLMs?

KL divergence quantifies the difference between two probability distributions:

(z)
()

In LLMs, it evaluates how closely model predictions match true distributions, guiding
fine-tuning to improve output quality and alignment with target data.

Dkr(Pl|Q) = P(x)

30 Question 30: What is the derivative of the ReLU function,
and why is it significant?

The ReLU function, f(x) = max(0,z), has a derivative:

) = {1 if 2> 0

0 otherwise

Its sparsity and non-linearity prevent vanishing gradients, making ReLLU computationally
efficient and widely used in LLMs for robust training.

31 Question 31: How does the chain rule apply to gradient
descent in LLMs?

The chain rule computes derivatives of composite functions:

2 gt = flo(e)) -9 (@)

In gradient descent, it enables backpropagation to calculate gradients layer by layer,
updating parameters to minimize loss efficiently across deep LLM architectures.

32 Question 32: How are attention scores calculated in trans-
formers?

Attention scores are computed as:

Attention(Q, K, V') = softma (QKT) Vv
ntion(Q, K, V') = softmax
Vi

The scaled dot product measures token relevance, and softmax normalizes scores to focus
on key tokens, enhancing context-aware generation in tasks like summarization.

33 Question 33: How does Gemini optimize multimodal LLM
training?

Gemini enhances efficiency via:
e Unified Architecture: Combines text and image processing for parameter efficiency.
e Advanced Attention: Improves cross-modal learning stability.
e Data Efficiency: Uses self-supervised techniques to reduce labeled data needs.

These features make Gemini more stable and scalable than models like GPT-4.

34 Question 34: What types of foundation models exist?

Foundation models include:
e Language Models: BERT, GPT-4 for text tasks.
e Vision Models: ResNet for image classification.
e Generative Models: DALL-E for content creation.
e Multimodal Models: CLIP for text-image tasks.

These models leverage broad pretraining for diverse applications.

35 Question 35: How does PEFT mitigate catastrophic forget-
ting?

Parameter-Efficient Fine-Tuning (PEFT) updates only a small subset of parameters,

freezing the rest to preserve pretrained knowledge. Techniques like LoRA ensure LLMs

adapt to new tasks without losing core capabilities, maintaining performance across do-
mains.

36 Question 36: What are the steps in Retrieval-Augmented
Generation (RAG)?

RAG involves:
1. Retrieval: Fetching relevant documents using query embeddings.
2. Ranking: Sorting documents by relevance.
3. Generation: Using retrieved context to generate accurate responses.

RAG enhances factual accuracy in tasks like question answering.

37 Question 37: How does Mixture of Experts (MoE) enhance
LLM scalability?

MokE uses a gating function to activate specific expert sub-networks per input, reducing
computational load. For example, only 10% of a models parameters might be used per
query, enabling billion-parameter models to operate efficiently while maintaining high
performance.

38 Question 38: What is Chain-of-Thought (CoT) prompting,
and how does it aid reasoning?

CoT prompting guides LLMs to solve problems step-by-step, mimicking human reasoning.
For example, in math problems, it breaks down calculations into logical steps, improving

9

accuracy and interpretability in complex tasks like logical inference or multi-step queries.

39 Question 39: How do discriminative and generative Al dif-
fer?

Discriminative Al, like sentiment classifiers, predicts labels based on input features, mod-
eling conditional probabilities. Generative Al, like GPT, creates new data by modeling
joint probabilities, suitable for tasks like text or image generation, offering creative flexi-
bility.

40 Question 40: How does knowledge graph integration im-
prove LLMs?

Knowledge graphs provide structured, factual data, enhancing LLMs by:
e Reducing Hallucinations: Verifying facts against the graph.
e Improving Reasoning: Leveraging entity relationships.
e Enhancing Context: Offering structured context for better responses.

This is valuable for question answering and entity recognition.

41 Question 41: What is zero-shot learning, and how do LLMs
implement it?
Zero-shot learning allows LLMs to perform untrained tasks using general knowledge from

pretraining. For example, prompted with "Classify this review as positive or negative,"
an LLM can infer sentiment without task-specific data, showcasing its versatility.

42 Question 42: How does Adaptive Softmax optimize LLMs?

Adaptive Softmax groups words by frequency, reducing computations for rare words. This
lowers the cost of handling large vocabularies, speeding up training and inference while
maintaining accuracy, especially in resource-limited settings.

43 Question 43: How do transformers address the vanishing
gradient problem?

Transformers mitigate vanishing gradients via:
e Self-Attention: Avoiding sequential dependencies.
e Residual Connections: Allowing direct gradient flow.

e Layer Normalization: Stabilizing updates.

10

These ensure effective training of deep models, unlike RNNs.

44 Question 44: What is few-shot learning, and what are its
benefits?

Few-shot learning enables LLMs to perform tasks with minimal examples, leveraging
pretrained knowledge. Benefits include reduced data needs, faster adaptation, and cost
efficiency, making it ideal for niche tasks like specialized text classification.

45 Question 45: How would you fix an LLM generating biased
or incorrect outputs?

To address biased or incorrect outputs:
1. Analyze Patterns: Identify bias sources in data or prompts.
2. Enhance Data: Use balanced datasets and debiasing techniques.
3. Fine-Tune: Retrain with curated data or adversarial methods.

These steps improve fairness and accuracy.

46 Question 46: How do encoders and decoders differ in trans-
formers?

Encoders process input sequences into abstract representations, capturing context. De-
coders generate outputs, using encoder outputs and prior tokens. In translation, the
encoder understands the source, and the decoder produces the target language, enabling
effective Seq2Seq tasks.

47 Question 47: How do LLMs differ from traditional statistical
language models?

LLMs use transformer architectures, massive datasets, and unsupervised pretraining,
unlike statistical models (e.g., N-grams) that rely on simpler, supervised methods. LLMs
handle long-range dependencies, contextual embeddings, and diverse tasks, but require
significant computational resources.

48 Question 48: What is a hyperparameter, and why is it im-
portant?
Hyperparameters are preset values, like learning rate or batch size, that control model

training. They influence convergence and performance; for example, a high learning rate
may cause instability. Tuning hyperparameters optimizes LLM efficiency and accuracy.

11

49 Question 49: What defines a Large Language Model (LLM)?

LLMs are Al systems trained on vast text corpora to understand and generate human-like
language. With billions of parameters, they excel in tasks like translation, summarization,
and question answering, leveraging contextual learning for broad applicability.

50 Question 50: What challenges do LLMs face in deployment?

LLM challenges include:
e Resource Intensity: High computational demands.
e Bias: Risk of perpetuating training data biases.
e Interpretability: Complex models are hard to explain.
e Privacy: Potential data security concerns.

Addressing these ensures ethical and effective LLM use.

Conclusion
This guide equips you with in-depth knowledge of LLMs, from core concepts to advanced

techniques. Share it with your LinkedIn community to inspire and educate aspiring Al
professionals. For more AI/ML insights, connect with me at Yonr LinkedIn Profile.

12

https://linkedin.com/in/your-profile

	Question 1: What does tokenization entail, and why is it critical for LLMs?
	Question 2: How does the attention mechanism function in transformer models?
	Question 3: What is the context window in LLMs, and why does it matter?
	Question 4: What distinguishes LoRA from QLoRA in fine-tuning LLMs?
	Question 5: How does beam search improve text generation compared to greedy decoding?
	Question 6: What role does temperature play in controlling LLM output?
	Question 7: What is masked language modeling, and how does it aid pretraining?
	Question 8: What are sequence-to-sequence models, and where are they applied?
	Question 9: How do autoregressive and masked models differ in LLM training?
	Question 10: What are embeddings, and how are they initialized in LLMs?
	Question 11: What is next sentence prediction, and how does it enhance LLMs?
	Question 12: How do top-k and top-p sampling differ in text generation?
	Question 13: Why is prompt engineering crucial for LLM performance?
	Question 14: How can LLMs avoid catastrophic forgetting during fine-tuning?
	Question 15: What is model distillation, and how does it benefit LLMs?
	Question 16: How do LLMs manage out-of-vocabulary (OOV) words?
	Question 17: How do transformers improve on traditional Seq2Seq models?
	Question 18: What is overfitting, and how can it be mitigated in LLMs?
	Question 19: What are generative versus discriminative models in NLP?
	Question 20: How does GPT-4 differ from GPT-3 in features and applications?
	Question 21: What are positional encodings, and why are they used?
	Question 22: What is multi-head attention, and how does it enhance LLMs?
	Question 23: How is the softmax function applied in attention mechanisms?
	Question 24: How does the dot product contribute to self-attention?
	Question 25: Why is cross-entropy loss used in language modeling?
	Question 26: How are gradients computed for embeddings in LLMs?
	Question 27: What is the Jacobian matrix’s role in transformer backpropagation?
	Question 28: How do eigenvalues and eigenvectors relate to dimensionality reduction?
	Question 29: What is KL divergence, and how is it used in LLMs?
	Question 30: What is the derivative of the ReLU function, and why is it significant?
	Question 31: How does the chain rule apply to gradient descent in LLMs?
	Question 32: How are attention scores calculated in transformers?
	Question 33: How does Gemini optimize multimodal LLM training?
	Question 34: What types of foundation models exist?
	Question 35: How does PEFT mitigate catastrophic forgetting?
	Question 36: What are the steps in Retrieval-Augmented Generation (RAG)?
	Question 37: How does Mixture of Experts (MoE) enhance LLM scalability?
	Question 38: What is Chain-of-Thought (CoT) prompting, and how does it aid reasoning?
	Question 39: How do discriminative and generative AI differ?
	Question 40: How does knowledge graph integration improve LLMs?
	Question 41: What is zero-shot learning, and how do LLMs implement it?
	Question 42: How does Adaptive Softmax optimize LLMs?
	Question 43: How do transformers address the vanishing gradient problem?
	Question 44: What is few-shot learning, and what are its benefits?
	Question 45: How would you fix an LLM generating biased or incorrect outputs?
	Question 46: How do encoders and decoders differ in transformers?
	Question 47: How do LLMs differ from traditional statistical language models?
	Question 48: What is a hyperparameter, and why is it important?
	Question 49: What defines a Large Language Model (LLM)?
	Question 50: What challenges do LLMs face in deployment?

